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A new iterative method based on a Newton correction vector for extension of
the Krylov subspace, its diagonal, and band versions are proposed for calcula-
tion of selected lowest eigenvalues and corresponding eigenvectors of the gen-
eralized symmetric eigenvalue problem. Additionally, diagonal and band Jacobi—
Davidson methods are introduced. Test calculations show that the new iterative
method usually converges faster than quadratic near a solution. The new iterative
method along with its band version uses a smaller number of iterative steps to ob-
tain a solution compared to the Jacobi—Davidson, band Jacobi—Davidson method,
and generalized Davidson method correspondingly. The diagonal version of the new
method preserves an advantage over the diagonal Jacobi—Davidson and the Davidson
method. © 2000 Academic Press

I. INTRODUCTION

The determination of the extreme eigenvalues and corresponding eigenvectors of
generalized eigenvalue problem

AX = ABX, 1)

with real symmetric matriced, B and a positive definite matri®, is one of the main prob-
lems of linear algebra, which is very important in many fields of natural sciences. Amo
them we can mention, for example, such fields of physical and chemical investigation:
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calculations of the low-lying electronic states of atoms and molecules by the configurat
interaction method [1, 2], numerical solution of the Hartree—Fock equation [3], and detert
nation of the rotational-vibrational energy levels of molecules [4]. As a rule, the precisi
of these methods increases with the growing matrix dimension in Eq. (1). Normally t
dimension of matrices in modern calculations could be significantly large thamnlis
case, iterative methods are usually used to find extreme and/or all eigenvalues of Eq.
The present investigation deals with the calculation of the extreme eigenvalues of Eq.
by iterative methods.
In the case of the unit matri®

AX = AX, (2)

the Lanczos [5] and Davidson [6] methods are used mostly for the determination of
lowest eigenvalues and corresponding eigenvectors of Eq. (2). Different generalization
these methods have been given in Refs. [7—45], while some efficient computer progr:
employing them have been published in Refs. [46-50]. Modifications of the Lanczos &
Davidson methods for calculation of eigenpairs of Eq. (1) have been proposed in Refs. [
14, 21, 32, 39, 51-55].

The main goal of many of these modifications was improvement of iterative convergen
However, only recently has it been recognized that the Boys—Nesbet correction forn
[56, 57] used in the Davidson method often generates basis vectors that are in the s
direction as the desired eigenvector, rather than orthogonal to it [42]. This results in m:
convergence problems in the Davidson method. On this basis the new Jacobi—Davic
method has been introduced and investigated in Refs. [39, 42, 45]. To keep the orthog
condition, a new correction vector in this method is calculated from the solution of tl
system of linear equations

(I — XXH(A—eB)(I — XXHU = —R, A3)

whereR= AX — ¢B X is the residual vectog;, X are the current approximate eigenvalue
and eigenvector for Eq. (1); andl is a new correction vector. Numerical complexity of a
solution of this linear equation system is proportiond) Where N is the matrix dimension.
For this reason application of the Jacobi—Davidson method for calculation of eigenvalue
large matrices is time consuming. However, note that the correction formula of the David:
[6] and the generalized Davidson [22] method has been derived from the equation

(A—AB)§X = (A— AB)X (4)

by introducing the diagonal and band approximation of the left hand side matrices. N
merical complexity of these methods is proportional N and dbrrespondingly, where n
is the bandwidth. This is much less than comparedoS¥milar simplifications could be
applied for Eq. (3). They lead to the diagonal and band Jacobi—Davidson methods that
introduced in the present investigation.

The other problem of the Davidson method connects with its classification. It is w
known that Davidson has classified his method as the Newton—Raphson type method |
However, itis possible to give other interpretations. It can be considered as a combinatio
the Boys—Nesbet correction formula with the Lanczos [5] and Karush [7] iteration metho



CALCULATIONS OF THE LOWEST EIGENVALUES 655

as well as a generalization of the optimal relaxation method [59] to include the correctic
from a large number of correction vectors. Wood and Zunger [21] have noted also that
Boys—Nesbet correction formula can be derived straightforwardly if it is assumed tha
variation of the residual vector is equal to zero

R(X+46X)=(A—AB)X+ (A—AB)§X =0.

The expression for the correction vectX is obtained then by introducing the diagonal
approximation to thed and B matrices of the denominator

(A= iB)X]

SXi =
Ai — AB;

©)
Thus, we can see that the Davidson method could be interpreted in a different way. The r
difficulty with the Davidson method is, however, that it does not have quadratic converge
near a solution. On the other hand, we know that the quadratic convergence is an inhe
property of the Newton type methods. This permits us to conclude that the Davidson met
is not a Newton—Raphson type method.

This conclusion stimulates the development of the Newton type iterative methods
determination of selected lowest eigenvalues of Eq. (1) presented below in the follow
order. The new Newton type iterative method is proposed in Section Il of this work. T
diagonal and band approximations of the Hessian matrix, introduced in Section Ill, h
permitted us to construct appropriate versions of the new iterative method that are g
in the same section. The diagonal and band Jacobi-Davidson methods are present
Section IV. Some numerical tests and comparison of the new methods with the Jac
Davidson, generalized Davidson, and the Davidson methods are presented in Sectic
while conclusions are given in Section VI.

II. ANEW ITERATIVE METHOD

Let us write Eq. (1) in the form

(X, AX)

p(X) = X.BX)

(6)

and apply the Newton—Raphson method for minimization of this functional. Then, a ¢
rection vectos X for the initial vectorX can be found from the Newton—Raphson equatior
[60]

HsX = —G, @)

whereH is a Hessian matrix an@ is a gradient vector. The gradient of the functional (6)
is equal to

G = AX—p(X)BX, (8)
while the second derivative matrkt is

H=A-p(X)B—BXG"—G(BX)*. 9)
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Substituting (8) and (9) into (7), we obtain
(A—p(X)B—-BXG" - G(BX)")§X = —-G. (10)

This is the Newton—Raphson equation for the correction vééfott was used by Roothaan
and Bagus in the single vector diagonalization method [61]. This method was develo
for finding eigenvalues and eigenvectors of small matrices.

Equation (10) is an inhomogeneous system of linear equations. By direct verification,
can find thatX is a solution of the homogeneous linear equation system

(A— p(X)B — BXG" — G(BX)")Y = 0. (11)

This means that the Hessian matrix (9) is ill conditioned. According to the general the«
of the linear equation system [62], the system of linear equations (10) has a solution in’
case only ifX is orthogonal to the right hand side of Eq. (10), i.e., to the gradient v&tor
But this is true. Thus, we can see that the Newton—Raphson equation (10) gives a corre
vector that is orthogonal to the current approximate eigenvettdre Jacobi—Davidson
correction vector has a similar orthogonality property. However, they differ: the first one
derived by assuming that a variation of the quadratic approximation of the energy functio
(6) is equal to zero, while the second one can be obtained by assuming that a variatic
the residual vector of Eg. (1) is equal to zero. In contrast to this the Boys—Nesbet correc
vector (5) does not have a similar orthogonality property.

Equation (10) permits us to construct a new iterative method for calculation of selec
lowest eigenvalues and corresponding eigenvectors of the generalized eigenvalue pro
(2). It is based on the solution of Eqg. (1) in the Krylov subspace by the Galerkin meth
[55, 63]. The critical moment in this approach is the choice of a Krylov space basis. It
known that the Krylov vectors form a basis in this space. However, other bases can be
as well. At least two of them are well known. These are the gradient vector system use
the Lanczos method [5] that is obtained by employing the orthogonalization procedure
the Krylov vector system and the Boys—Nesbet vector system used in the Davidson me
[6]. The Newton correction vectors system, generated by Eq. (10), also forms a basis of
Krylov space. Therefore, it can be used in a solution of Eq. (1) by the Galerkin meth
The algorithm of the new iterative method based on the Newton correction vectors sys
is given as follows:

Step1. Select an orthogonal set of approximate vectors to the first eigenvects
X1, X2, ..., Xk (k=m). Form and savé\ X1, AXy, ..., AXy, andFj = (AXi, Xj), §j =
(BXi, X)),i,j=1,.. k.

Step2. Solve the equatiofrd =¢Sd and select the eigenvectdr=(d, ..., dy)"
corresponding to thmth eigenvalue, of this equation.

Step3. Form Z = Z:‘zl d X; as an approximation to theth eigenvector. Form
Gm = AZ — epyBZ and check convergence ||

Step4. Solve the equation

(A—emB - BZG" — G(BZ)")Xis1 = —Gnm (12)

to define new vectoKy, ;.
Step5. OrthogonalizeXy,; to the vectorXy, ..., X, i.e.,forn=1, ...,k do

On = (an Xk+1)’

Xk+1 = Xk+l — on Xp.



CALCULATIONS OF THE LOWEST EIGENVALUES 657

Step6. Compare the maximum of the absolute valuerptn =1, ..., k) with an
orthogonality criterion and possibly repeztep5. Normalize the finaKy .

Step7. Putk=k+ 1. Form Fix 1= (AXi, Xk+1), Skr1=(BXi, Xyy1), i =1,...,
k + 1, and return t&tep2.

Usually all intermediate vectors are stored on external files in this type of algorithm.
the case of large matrices and/or slow convergence of the iterations, this results in s
computational difficulties connected with keeping and using large arrays. To overco
these difficulties the number of saved vectors could be limited and a restart procedure ¢
be intorduced. It can use a vector calculated in Step 4 as a new vector and the calcul:
can be continued with Step 2.

The main problem of this algorithm, however, is connected with the singularity of t
Hessian matrix in Eq. (9) and, consequently, in Eg. (10). A possible approach to the solu
of this equation has been proposed in Ref. [43]. A modern approach to a solution of
singular linear equation system consists of using the incomplete Cholesky factoriza
method [62, 64]. In the present study, it was found that Eq. (10) could be solved successt
also by the Cholesky factorization method [65], because the condition number of the Hes
matrix was less than £ at least in all numerical tests presented below. The DECOM
and SOLVE subroutines given in Ref. [66] have been used for this purpose in the pre:
investigation.

Ill. THE BAND AND DIAGONAL ITERATIVE METHODS

Solution of the linear equations system (12) is the most important step in the new mett
New vectors generated at this step are used for extending the generalized Krylov subs
of an initial generalized eigenvalue problem (1). When this subspace is formed by
Newton correction vectors, then an iterative method based on it will have convergence fa
than quadratic near a solution, because it will use correction terms higher than quadratis
the construction of a new vector. With other vectors, the obtained method could conve
more slowly; nevertheless, the convergence speed could be high enough. Particularly
propriate vectors can be generated by employing approximation methods for the solu
of the Newton—Raphson equation (12).

Many different approximation methods can be used for this purpose. This opens exten
possibilities in constructing new efficient iterative methods. In the present study, the t
simple approximations of the Hessian matrix, band and diagonal, are considered.

The band approximation leads to the band iterative method. In this method, the b
submatrix withn diagonals of the full Hessian matrix is used in a solution of Eq. (12
This reduces significantly the numerical complexity of a solution of the Newton—Raphs
equation (12). In all others, the band iteration method is similar to the original one.

The diagonal approximation of th&, B, and Hessian matrix by the main diagonal in
Eq. (10) results in a new simple formula of a correction vector

Gi
Ai —pBi — BiXiGi — GiBii X’

X = —

It permits us to propose the diagonal iterative method for calculation of extreme selec
eigenvalues of Eq. (1) without solution of a linear equation system. The algorithm of ti
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method is as follows:

Stepl. Select an orthogonal set of approximate vectors to the first eigenvect
X1, X2, ..., Xk (K=m). Form and savéA X1, AXy, ..., AXy, andFj = (AX, X)), §j =
(BXi, X)), i,j=1,...,k

Step2. Solve the equatiofrd = ¢Sd and select the eigenvectdr= (dy, ..., d)"
corresponding to thmth eigenvalue, of this equation.

Step3. Form Z = Zrzl d Xj as an approximation to theth eigenvector. Form
Gm= AZ — ¢nBZ and check convergence ¢Gn,||.

Step4. Form new vectoXy, 1

Gi,m
Ai —emBi — BiZiGi — GiB;i Zi

Xikt1=—
Step5. OrthogonalizeXy, 1 to the vectorsXy, ..., X, i.e.,forn=1, ...,k do

on = (Xn, Xkt1),

X1 = Xkp1 — onXn.

Step6. Compare the maximum of the absolute valuesptn=1, ..., k) with an
orthogonality criterion and possibly repestep5. Normalize the finakKy ;.

Step7. Putk=k + 1. Form Fix;1 = (AXi, Xk11), Skr1=(BXi, Xks1), i =1, ...,
k 4+ 1 and return téstep2.

The diagonal iterative method is similar to the new iterative method and the band itera
method. However, the main difference consists in the absence of a linear equation solu
This simplification leads to more slow convergence of the diagonal iterative method cc
pared to the new iterative method and the band iterative method. Nevertheless, wh
calculation of theA and B matrices is faster than a solution of a linear equation systen
then the diagonal iterative method could have an advantage over the band and new iter
methods, because the diagonal iterative method could be less time consuming in this ¢
However, on the other hand, when calculation of the A and B matrices takes longer the
solution of a linear equation system, then the band and the new iterative methods outper
the diagonal iterative method due to more faster convergence of the iterations. Thus,
can see that the problem of computational efficiency of the new methods depends on s
external factors so that it must be considered separately.

IV. DIAGONAL AND BAND JACOBI-DAVIDSON METHODS

The diagonal approximations of all left hand side matrices of Eq. (3) lead to another n
simple formula of a basis vector

[(A—eB)X]i

Vi = _(Aii — &Bi)(Bii — (B Xi)%)?’

This equation permits us to construct the diagonal Jacobi—Davidson iterative method
calculation of selected lowest eigenvalues and corresponding eigenvectors of the genera
eigenvalue problem (1). A numerical algorithm of this method is similar to the diagon
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iterative method introduced in the previous section and given below:

Stepl. Select an orthogonal set of approximate vectors to the first eigenvect
X1, Xo, ..., X (k=m). Form and savé\ Xy, AXs, ..., AX, andFj = (AXi, X)), §; =
(BXi, X, i,j=1,...,k

Step2. Solve the equatiofrd = ¢Sd and select the eigenvectdr= (dy, ..., d)"
corresponding to theth eigenvalue, of this equation.

Step3. FormZ = Zik:l d; X; as an approximation to theth eigenvector. Forns,, =
AZ — ¢BZ and check convergence ¢G||.

Step4. Form new vectoXy, 1

_ Gi,m
(A — emBi)(Bii — (Bii Zi)?»)?
Step5. OrthogonalizeXy, 1 to the vectorsXy, ..., X, i.e.,forn=1,...,kdo

Xikyl =

On = (xn, xk+l)7

X1 = X1 — onXp.

Step6. Compare the maximum of the absolute valuesptn=1, ..., k) with an
orthogonality criterion and possibly repeztep5. Normalize the finaKy ;.

Step7. Putk=k+ 1. Form Fjx11=(AX, Xk11), Skr1=(BX;, Xks1), i =1, ...,
k + 1, and return t&tep2.

The band Jacobi—Davidson algorithm is obtained when a band submatrixdvétbonals
of the full matrix

(1 — XXH)(A—eB)(I — XXT) (13)

is used in solution of Eq. (3). Therefore, the difference between the diagonal and b
Jacobi—Davidson algorithms is only in Step 4. In the band Jacobi—Davidson algorithm a't
vectorXy, 1 is calculated from a solution of the linear equation system with the band matr

(1 —ZZ")(A—eB)(I — ZZH)Xks1 = —Gnm. (14)

Note that the Jacobi—Davidson algorithm used in the present investigation is obtained w
a calculation of a new vector at Step 4 in the diagonal Jacobi—Davidson method is reple
by the solution of Eq. (14) with the full matrix.

Note also that Eq. (3) for a correction vector of the Jacobi—-Davidson method has b
derived from Eq. (4). However, this equation is degenerate when no approximations
used for left-hand side matrices. Equation (3) preserves in some sense this propert
particular, by direct verification we can find that matrix (13) is singulaX is a solution
of Eq. (1). Nevertheless, the system of linear equation (3) is consistent because the res
vector is orthogonal to a solution of Eq. (1). Thus, we can see that numerical problems
solution of a linear equation system in the Jacobi—Davidson and in the new iterative met
are similar and connected with singularity of the linear system matrix.

V. NUMERICAL TESTS

In all numerical tests presented below iterations were terminated when the Euclid
norm of the residual vector was less tham¥0The Euclidean norm of a residual vector or
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number of iterations needed for calculation of an eigenvalue are presented in tables main
demonstrate convergence of different methods in these calculations. The maximal dimen
of the Krylov space was equal to 50. The following notations are used below: NIM is for ti
new iterative method proposed in this work; Bl is for the band iterative method with
n diagonals; DIM is for the diagonal iterative method; JD is used for the Jacobi—Davids
method; BJDA) is for the band Jacobi—Davidson method witliagonals; DJD is for the
diagonal Jacobi-Davidson method; D is for the Davidson method; and)G®(sed for
the generalized Davidson method [22] withdiagonals. The algorithm of the Davidson
method used in the present calculation differs from that of the diagonal iterative mett
and the diagonal Jacobi—Davidson method described above in Step 4 only. At this ste
new basis vector in the Davidson method was calculated by the Boys—Nesbet formula
a correction vector (4).

ExAMPLE 1. A test matrixA of order 20 was taken from the first example of Ref. [22].
Matrix A was tridiagonal except thak;, and A, were nonzero, withA;; =i while all
other nonzero elements were equal to 1. The starting vectof@®.1, 0.1, ...,0.1)7.
The structure of this matrix is similar to theuldkel matrix [1] of a ring polymer. The
convergence of the D, GDM(3), DJD, BJD(3), JD, DIM, BIM(3), and NIM methods is
presented in Table I. Comparison of these results shows that convergence of the GD, E
and BIM methods as well JD and NIM methods is similar while DJD and DIM used or
iteration step less when compared to the Davidson method.

ExampPLE 2. The lowest eigenvalue of the diagonal matrix of order 100

i /55, i=1,...,8
Aj =< 19/55+i/55, i=09,...,16
i — 16, i =16,...,100

proposed in Ref. [43] was determined by the Davidson, DJD, and DIM methods in tl
example. The last two methods converged at the 2nd iteration while the Davidson met
reached the solution at the 56th iteration. Iterations started wittltBe0.05, . .., 0.05)7

TABLE |
Convergence on the Norm of the Residual Vector for Different Methods in Example 1

Iteration D GD(3) DJD BJID(3) JD DIM BIM(3) NIM

1 0.52735+01 0.52735+01 0.52735+01 0.52735+01 0.52735+01 0.52735+01 0.52735+01 0.52735-
2 0.55473+01 0.37773+01 0.13455+01 0.18826+01 0.23692+01 0.17915+01 0.18826+01 0.23692-
3 0.18025+01 0.12863+01 0.13239+01 0.11818+01 0.14567+01 0.12866+01 0.11818+01 0.14567-
4 0.17788+01 0.11214+01 0.38056+00 0.14981+01 0.15298+01 0.42053+00 0.14981+01 0.15298-
5 0.95384+00 0.10343+01 0.83907-01 0.59038-01 0.22739-01 0.78438-00 0.59038-01 0.22739-
6
7
8

0.76416-01 0.15143-01 0.22301-01 0.17246-02 0.65026-07 0.15242-01 0.17246-02 0.65026-
0.11769-01  0.10149-07 0.42753-02 0.51518-07 0.19118-14 0.29721-02 0.51518-07 0.26635-

0.24070-02  0.56239-14 0.67498-03 0.33977-14 0.42528-03  0.23743-14

9 0.22914-03 0.85420-04 0.52728-04
10 0.24869-04 0.92272-05 0.50383-05
11 0.28416-05 0.95266-06 0.44750-06
12 0.23595-06 0.87736-07 0.37375-07
13 0.20861-07 0.71991-08 0.41318-08
14 0.14084-08 0.33083-09 0.28808-09
15 0.14697-09 0.31498-10 0.14483-10

16 0.60098-11
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TABLE Il
Convergence on the Norm of the Residual Vector of Different Methods
for the Test Matrix of Example 2

Iteration D DJD DIM
1 0.18748+02 0.18748+02 0.18748+02
2 0.17025+02 0.29466-14 0.38262-14
3 0.93305+01
4 0.90111+01
5 0.84227+01

initial vector. The convergence of these iterations is presented in Table Il. We can see
the convergence of the diagonal Jacobi—Davidson and diagonal iterative methods is f
than quadratic at the end of the iterations. This is because for the diagonal matrix tt
diagonal methods are equivalent to the Jacobi—Davidson and the new iterative methoc

ExampPLE 3. In this example the number of iterations that were needed to determine
lowest eigenvalue and the corresponding eigenvector of a symmetric matrix of order !
by different methods were compared. This matrix is defined by the relation

A b i = ]
T\ Wrabsi - ), i#]

TABLE 11l
A Comparison of the Different Methods for Example 3

w

Method 1.0 0.5 0.1 0.01 0.001
D 26 26 22 21 21
GD(@3) 24 21 22 20 24
GD(5) 26 30 22 21 25
GD(11) 39 46 26 36 30
GD(21) 82 61 65 68 69
GD(51) 40 43 58 52 50
DJD 17 13 10 7 6
BJD(3) 14 12 9 7 6
BJD(5) 13 13 9 7 7
BJD(11) 13 11 8 7 7
BJD(21) 14 11 9 8 7
BJD(51) 13 11 9 9 8
JD 9 8 7 6 6
DIM 15 13 9 7 6
BIM(3) 14 12 9 7 6
BIM(5) 13 13 9 7 7
BIM(11) 13 11 8 7 7
BIM(21) 14 11 9 8 7
BIM(51) 13 11 9 9 8
NIM 9 8 7 6 6

Note.The number of iterations is reported that are needed to find the lowest eigenvalue.
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TABLE IV
Convergence of the Different Methods of Example 4

Dimension

Dimension Dimension
Method 400 900 1600 Method 400 900 1600 Method 400 900 1600
D 50 52 52 DJD 50 52 52 DIM 52 52 52
GD(3) 38 38 38  BJD(3) 38 38 38  BIM(3) 38 38 38
GD(5) 36 36 36 BJD(5) 37 37 37 BIM(5) 36 36 36

GD(21) 36 36 36 BJD(21) 36 37 37  BIM(21)
GD(51) 28 36 36 BJD(1) 20 36 37  BIM(51)
GD(101) 27 22 22 BJD(101) 12 20 20 BIM(101) 11 18 18
GD(51) 53 27 22 BJD(I51) 16 12 20  BIM(151) 11 11 18
GD(201) 15 60 27 BJD(201) 20 19 12 BIM@01) 9 11 11
JD 7 6 6 NIM 6 6 6

36 36 36
18 36 36

Note.The number of iterations is reported that are needed to find the lowest eigenvalue.

All iteration methods started with initial vector equal b0, 0.001, 0.001, ..., 0.001)".
Calculations were performed for five different value$df This parameter changes the di-
agonal dominance of this matrix. The results of these calculations are presented in Table
They show that the DIM has a small advantage over the DJD method and both of them
better than the Davidson method. It should be noted also that the advantage of the DIM
DJD methods over the Davidson method increases with increasing diagonal dominanc
the test matrix. Convergence of the BIM and BJD methods is very similar and significan
better compared to the GD method. The NIM and JD methods display the best converge
in this example.

Additionally, the lowest eigenvalue of the same matrix of order 2000With 0.001 was
calculated by the DIM, DJD, and Davidson methods. In the latter case, 175 iterations w

needed to obtain the correct solution. The DJD used 7 iterations, while only 6 iteratic
were used by the NIM method.

ExamMPLE 4. The lowest eigenvalue of the generalized eigenvalue problem (1) of orc
400, 900, and 1600 with the matrices proposed in Ref. [53] was determined in this exar
by different methods. Results of these calculations are presented in Tables IVand V. T

TABLE V
Convergence of the New lterative Method with the Matrices of Order 400 of Example 4

JD NIM

Iteration Eigenvalue Res. norm Eigenvalue Res. norm
1 —12.26625649283094 0.35255+01  —12.26625649283094 0.35255+01
2 —12.29216863017134 0.17875+01  —12.28740689800787 0.16976+01
3 —15.51688085881869 0.16415+01  —15.49796410187801 0.19020+01
4 —15.93619336403492 0.68650-01 —15.93693829254018 0.30147-01
5 —15.93704612682402 0.11697-03 —15.93704612831661 0.92399-07
6 —15.93704612831663 0.10616-09 —15.93704612831660 0.29008-13
7

—15.93704612831662 0.27146-13
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comparison shows that the DIM, DJD, and Davidson methods as well the BIM, BJD, and
methods with a small number of band rows display similar convergence correspondin
However, for a large number of band rows the BIM method outperforms the BJD meth
which in one’s turn outperforms the Davidson method. The convergence of the NIM i
little better than that of the JD method. For the matrices of order 400, the convergenc
the NIM and JD methods is given in TableV. We can see that it is faster than quadratic.

ExaMPLE 5. The largest eigenvalue of a test matrix proposed in Ref. [35] whose nc
zero elements are defined by the relation

i, |=]a
Aj =405 i=j+1li=j-1
05 (. phel@m, (n D]

was calculated by different methods. Dimension of the test matrix was equal to 10
while an initial vector was equal t1.0, 0.01, ..., 0.01)". Obtained results are given in
Table VI. They show that the convergence property of the NIM and JD as well BIM a
BJD methods is similar, while the behavior of the diagonal methods is quite different. T
best convergence was displayed by the DIM and the slowest by the Davidson method.
condition number of the matrix in the JD method in this example was extremely high
the end of iterations. This results in a numerical problem. Therefore, only the 0.27065
value of the residual vector was reached by this method.

EXAMPLE 6. In this example, the zero eigenvalue of the Hilbert matrix with dimensio
of order 1000 was determined by different methods. The Hilbert matrix is defined in t
following way

L1 i =]
2i—1°

Aj = { T o
T AL

Results of these test calculations obtained with the starting vector eQ&l@4, 0.001, ... .,
1.0)T are given in Table VII. They show only a small advantage of the BIM and BJI

TABLE VI
Convergence on the Norm of the Residual Vector for Different Methods in Example 5

Iteration D GD(3) DJD BJID(3) JD DIM BIM(3) NIM

1 0.16766+03 0.16766+03 0.16766+03 0.16766+03 0.16766+03 0.16766+03 0.16766+03 0.16766-
2 0.79458+02 0.16710+03 0.70974+00 0.56094+00 0.77235+02 0.97330+00 0.56094+00 0.77235-
3 0.79174+02 0.51283+00 0.70974+00 0.94622+00 0.32774+02 0.56030+00 0.94622+00 0.32774-
4 0.57425+02 0.29706-01  0.77239+00 0.14526-01 0.65083+01 0.66127-01 0.14526-01 0.65083-
5 0.12659+02 0.52532-05 0.20686-00 0.47811-04 0.21372+01 0.15521-01 0.47811-04 0.21372-
6
7
8

0.12829+02 0.25793-11 0.59411-01 0.13194-10 0.70261+00 0.19505-02 0.10282-10 0.70261-

0.21416+02 0.79522-02 0.49001-02 0.11102-03 0.49001-02
0.65544+01 0.11531-02 0.27065-09  0.96683-05 0.67689-10
9 0.19410+02 0.92830-04 0.57259-06
10 0.44205+01 0.90118-05 0.48091-07
11 0.24229+01 0.52165-06 0.34047-08
12 0.22197+01 0.38238-07 0.18247-09
13 0.34601+01 0.17295-08 0.11505-10
14 0.57337+01 0.10136-09

15 0.94285+01 0.37496-10
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TABLE VII
A Comparison of the Different Methods for Example 6

Method Num. of iter. Method Num. of iter. Method Num. of iter.
D 18 DJD 18 DIM 16
GD(3) 17 BJD(3) 18 BIM(3) 18
GD(5) 18 BJD(5) 19 BIM(5) 19
GD(21) 15 BJD(21) 15 BIM(21) 15
GD(51) 16 BJD(51) 16 BIM(51) 15
GD(101) 13 BJD(101) 11 BIM(101) 11
GD(151) 16 BJD(151) 14 BIM(151) 14
GD(201) 11 BJD(201) 10 BIM(201) 10

JD 8 NIM 8

methods over the GD method. The DIM used less number of iterations when compare
the DJD and Davidson methods. Convergence of the NIM and JD methods was simila

ExamMPLE 7. The total energy of the ground state of the BC molecule was calculated
the configuration interaction (Cl) method as implemented in the MRD-CI program [67—7
For correct comparison, the DJD and DIM methods were used in this program direc
without modification to calculate the lowest eigenvalue of the Cl matrix along with tf
Davidson method, which is usually employed in this program. The present investigat
points out, however, that a more efficient method could be proposed for calculation of low
roots of the Cl matrix [72]. The order of the Cl matrix was equal to 267,985. The iteratiol
were terminated when the Euclidean norm of the residual vector was less th&anAl0
three methods showed similar convergence in these calculations. A solution was obta
at 18th iteration step by each method.

VI. CONCLUSIONS

A new iterative method for calculation of selected lowest eigenvalues and correspo
ing eigenvectors of the generalized eigenvalue problem is proposed in this work toge
with its band and diagonal versions. The band and diagonal Jacobi—Davidson methods
been proposed also by employing the corresponding approximation to the Jacobi—Davic
method. These five new methods together with the Davidson, generalized Davidson,
Jacobi—Davidson methods form three groups of methods. The first group includes
Davidson and generalized Davidson methods, the second one is formed by the Jac
Davidson method and its simplified versions, while the new iterative method together w
its diagonal and band versions forms the third group of methods.

Numerical tests show that the convergence property in the Jacobi-Davidson and
Newton type methods is improved from diagonal to the full methods. However, for tl
Davidson-type methods this is not correct. The generalized Davidson method outperfo
the Davidson method only for narrow band matrices. With wide band matrices, conv
gence of the generalized Davidson method is bad. This is a consequence of the fact
with increasing bandwidth Eq. (4) becomes degenerate. Summarizing the results of all
calculations we can conclude that the convergence of the Jacobi—Davidson and Nev
type methods is better when compared to the Davidson type method. This is due to
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thogonality property of the correction vector of the Jacobi—Davidson and the new it
ive methods. An advantage of the Newton type methods over the Jacobi—Davidson

methods that can be observed in the presented results is connected with the general apf;

to

the derivation of a correction vector. The equation of a correction vector in the Jaco

Davidson type method can be derived by assuming that variation of the residual ve

is

equal to zero, while the equation of a correction vector in the Newton type method:

obtained by assuming that a variation of the quadratic approximation of the functional

is

equal to zero.
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