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A new iterative method based on a Newton correction vector for extension of
the Krylov subspace, its diagonal, and band versions are proposed for calcula-
tion of selected lowest eigenvalues and corresponding eigenvectors of the gen-
eralized symmetric eigenvalue problem. Additionally, diagonal and band Jacobi–
Davidson methods are introduced. Test calculations show that the new iterative
method usually converges faster than quadratic near a solution. The new iterative
method along with its band version uses a smaller number of iterative steps to ob-
tain a solution compared to the Jacobi–Davidson, band Jacobi–Davidson method,
and generalized Davidson method correspondingly. The diagonal version of the new
method preserves an advantage over the diagonal Jacobi–Davidson and the Davidson
method. c© 2000 Academic Press

I. INTRODUCTION

The determination of the extreme eigenvalues and corresponding eigenvectors of the
generalized eigenvalue problem

AX = λB X, (1)

with real symmetric matricesA, B and a positive definite matrixB, is one of the main prob-
lems of linear algebra, which is very important in many fields of natural sciences. Among
them we can mention, for example, such fields of physical and chemical investigations as
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calculations of the low-lying electronic states of atoms and molecules by the configuration
interaction method [1, 2], numerical solution of the Hartree–Fock equation [3], and determi-
nation of the rotational-vibrational energy levels of molecules [4]. As a rule, the precision
of these methods increases with the growing matrix dimension in Eq. (1). Normally the
dimension of matrices in modern calculations could be significantly large than 103. In this
case, iterative methods are usually used to find extreme and/or all eigenvalues of Eq. (1).
The present investigation deals with the calculation of the extreme eigenvalues of Eq. (1)
by iterative methods.

In the case of the unit matrixB

AX = λX, (2)

the Lanczos [5] and Davidson [6] methods are used mostly for the determination of the
lowest eigenvalues and corresponding eigenvectors of Eq. (2). Different generalizations of
these methods have been given in Refs. [7–45], while some efficient computer programs
employing them have been published in Refs. [46–50]. Modifications of the Lanczos and
Davidson methods for calculation of eigenpairs of Eq. (1) have been proposed in Refs. [12–
14, 21, 32, 39, 51–55].

The main goal of many of these modifications was improvement of iterative convergence.
However, only recently has it been recognized that the Boys–Nesbet correction formula
[56, 57] used in the Davidson method often generates basis vectors that are in the same
direction as the desired eigenvector, rather than orthogonal to it [42]. This results in many
convergence problems in the Davidson method. On this basis the new Jacobi–Davidson
method has been introduced and investigated in Refs. [39, 42, 45]. To keep the orthogonal
condition, a new correction vector in this method is calculated from the solution of the
system of linear equations

(I − X X+)(A− εB)(I − X X+)U = −R, (3)

whereR= AX− εB X is the residual vector;ε, X are the current approximate eigenvalue
and eigenvector for Eq. (1); andU is a new correction vector. Numerical complexity of a
solution of this linear equation system is proportional N3, where N is the matrix dimension.
For this reason application of the Jacobi–Davidson method for calculation of eigenvalues of
large matrices is time consuming. However, note that the correction formula of the Davidson
[6] and the generalized Davidson [22] method has been derived from the equation

(A− λB)δX = (A− λB)X (4)

by introducing the diagonal and band approximation of the left hand side matrices. Nu-
merical complexity of these methods is proportional N and Nn2 correspondingly, where n
is the bandwidth. This is much less than compared to N3. Similar simplifications could be
applied for Eq. (3). They lead to the diagonal and band Jacobi–Davidson methods that are
introduced in the present investigation.

The other problem of the Davidson method connects with its classification. It is well
known that Davidson has classified his method as the Newton–Raphson type method [58].
However, it is possible to give other interpretations. It can be considered as a combination of
the Boys–Nesbet correction formula with the Lanczos [5] and Karush [7] iteration methods,
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as well as a generalization of the optimal relaxation method [59] to include the corrections
from a large number of correction vectors. Wood and Zunger [21] have noted also that the
Boys–Nesbet correction formula can be derived straightforwardly if it is assumed that a
variation of the residual vector is equal to zero

R(X + δX) = (A− λB)X + (A− λB)δX = 0.

The expression for the correction vectorδX is obtained then by introducing the diagonal
approximation to theA andB matrices of the denominator

δXi = − [(A− λB)X] i

Aii − λBii
. (5)

Thus, we can see that the Davidson method could be interpreted in a different way. The main
difficulty with the Davidson method is, however, that it does not have quadratic convergence
near a solution. On the other hand, we know that the quadratic convergence is an inherent
property of the Newton type methods. This permits us to conclude that the Davidson method
is not a Newton–Raphson type method.

This conclusion stimulates the development of the Newton type iterative methods for
determination of selected lowest eigenvalues of Eq. (1) presented below in the following
order. The new Newton type iterative method is proposed in Section II of this work. The
diagonal and band approximations of the Hessian matrix, introduced in Section III, have
permitted us to construct appropriate versions of the new iterative method that are given
in the same section. The diagonal and band Jacobi–Davidson methods are presented in
Section IV. Some numerical tests and comparison of the new methods with the Jacobi–
Davidson, generalized Davidson, and the Davidson methods are presented in Section V,
while conclusions are given in Section VI.

II. A NEW ITERATIVE METHOD

Let us write Eq. (1) in the form

ρ(X) = (X, AX)

(X, B X)
(6)

and apply the Newton–Raphson method for minimization of this functional. Then, a cor-
rection vectorδX for the initial vectorX can be found from the Newton–Raphson equation
[60]

HδX = −G, (7)

whereH is a Hessian matrix andG is a gradient vector. The gradient of the functional (6)
is equal to

G = AX− ρ(X)B X, (8)

while the second derivative matrixH is

H = A− ρ(X)B− B XG+ − G(B X)+. (9)
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Substituting (8) and (9) into (7), we obtain

(A− ρ(X)B− B XG+ − G(B X)+)δX = −G. (10)

This is the Newton–Raphson equation for the correction vectorδX. It was used by Roothaan
and Bagus in the single vector diagonalization method [61]. This method was developed
for finding eigenvalues and eigenvectors of small matrices.

Equation (10) is an inhomogeneous system of linear equations. By direct verification, we
can find thatX is a solution of the homogeneous linear equation system

(A− ρ(X)B− B XG+ − G(B X)+)Y = 0. (11)

This means that the Hessian matrix (9) is ill conditioned. According to the general theory
of the linear equation system [62], the system of linear equations (10) has a solution in this
case only ifX is orthogonal to the right hand side of Eq. (10), i.e., to the gradient vectorG.
But this is true. Thus, we can see that the Newton–Raphson equation (10) gives a correction
vector that is orthogonal to the current approximate eigenvectorX. The Jacobi–Davidson
correction vector has a similar orthogonality property. However, they differ: the first one is
derived by assuming that a variation of the quadratic approximation of the energy functional
(6) is equal to zero, while the second one can be obtained by assuming that a variation of
the residual vector of Eq. (1) is equal to zero. In contrast to this the Boys–Nesbet correction
vector (5) does not have a similar orthogonality property.

Equation (10) permits us to construct a new iterative method for calculation of selected
lowest eigenvalues and corresponding eigenvectors of the generalized eigenvalue problem
(1). It is based on the solution of Eq. (1) in the Krylov subspace by the Galerkin method
[55, 63]. The critical moment in this approach is the choice of a Krylov space basis. It is
known that the Krylov vectors form a basis in this space. However, other bases can be used
as well. At least two of them are well known. These are the gradient vector system used in
the Lanczos method [5] that is obtained by employing the orthogonalization procedure to
the Krylov vector system and the Boys–Nesbet vector system used in the Davidson method
[6]. The Newton correction vectors system, generated by Eq. (10), also forms a basis of the
Krylov space. Therefore, it can be used in a solution of Eq. (1) by the Galerkin method.
The algorithm of the new iterative method based on the Newton correction vectors system
is given as follows:

Step1. Select an orthogonal set of approximate vectors to the first eigenvectors
X1, X2, . . . , Xk (k≥m). Form and saveAX1, AX2, . . . , AXk, andFi j = (AXi , X j ), Si j =
(B Xi , X j ), i , j = 1, . . ., k.

Step2. Solve the equationFd= εSd and select the eigenvectord= (d, . . . ,dk)
T

corresponding to themth eigenvalueεm of this equation.
Step3. Form Z =∑k

i=1 di Xi as an approximation to themth eigenvector. Form
Gm = AZ− εmBZ and check convergence on‖Gm‖.

Step4. Solve the equation

(A− εmB− BZG+ − G(BZ)+)Xk+1 = −Gm (12)

to define new vectorXk+1.
Step5. OrthogonalizeXk+1 to the vectorX1, . . . , Xk, i.e., forn= 1, . . . , k do

σn = (Xn, Xk+1),

Xk+1 = Xk+1− σn Xn.
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Step6. Compare the maximum of the absolute value ofσn (n = 1, . . . , k) with an
orthogonality criterion and possibly repeatStep5. Normalize the finalXk+1.

Step7. Putk= k+ 1. Form Fik+1= (AXi , Xk+1), Sik+1= (B Xi , Xk+1), i = 1, . . . ,
k+ 1, and return toStep2.

Usually all intermediate vectors are stored on external files in this type of algorithm. In
the case of large matrices and/or slow convergence of the iterations, this results in some
computational difficulties connected with keeping and using large arrays. To overcome
these difficulties the number of saved vectors could be limited and a restart procedure could
be intorduced. It can use a vector calculated in Step 4 as a new vector and the calculation
can be continued with Step 2.

The main problem of this algorithm, however, is connected with the singularity of the
Hessian matrix in Eq. (9) and, consequently, in Eq. (10). A possible approach to the solution
of this equation has been proposed in Ref. [43]. A modern approach to a solution of the
singular linear equation system consists of using the incomplete Cholesky factorization
method [62, 64]. In the present study, it was found that Eq. (10) could be solved successfully
also by the Cholesky factorization method [65], because the condition number of the Hessian
matrix was less than 1030, at least in all numerical tests presented below. The DECOMP
and SOLVE subroutines given in Ref. [66] have been used for this purpose in the present
investigation.

III. THE BAND AND DIAGONAL ITERATIVE METHODS

Solution of the linear equations system (12) is the most important step in the new method.
New vectors generated at this step are used for extending the generalized Krylov subspace
of an initial generalized eigenvalue problem (1). When this subspace is formed by the
Newton correction vectors, then an iterative method based on it will have convergence faster
than quadratic near a solution, because it will use correction terms higher than quadratic for
the construction of a new vector. With other vectors, the obtained method could converge
more slowly; nevertheless, the convergence speed could be high enough. Particularly, ap-
propriate vectors can be generated by employing approximation methods for the solution
of the Newton–Raphson equation (12).

Many different approximation methods can be used for this purpose. This opens extensive
possibilities in constructing new efficient iterative methods. In the present study, the two
simple approximations of the Hessian matrix, band and diagonal, are considered.

The band approximation leads to the band iterative method. In this method, the band
submatrix withn diagonals of the full Hessian matrix is used in a solution of Eq. (12).
This reduces significantly the numerical complexity of a solution of the Newton–Raphson
equation (12). In all others, the band iteration method is similar to the original one.

The diagonal approximation of theA, B, and Hessian matrix by the main diagonal in
Eq. (10) results in a new simple formula of a correction vector

δXi = − Gi

Aii − ρBii − Bii Xi Gi − Gi Bii Xi
.

It permits us to propose the diagonal iterative method for calculation of extreme selected
eigenvalues of Eq. (1) without solution of a linear equation system. The algorithm of this



658 ALEXANDER V. MITIN

method is as follows:

Step1. Select an orthogonal set of approximate vectors to the first eigenvectors
X1, X2, . . . , Xk (k≥m). Form and saveAX1, AX2, . . . , AXk, andFi j = (AXi , X j ), Si j =
(B Xi , X j ), i, j = 1, . . . , k.

Step2. Solve the equationFd= εSd and select the eigenvectord= (d1, . . . ,dk)
T

corresponding to themth eigenvalueεm of this equation.
Step3. Form Z= ∑k

i=1 di Xi as an approximation to themth eigenvector. Form
Gm= AZ− εmBZ and check convergence on‖Gm‖.

Step4. Form new vectorXk+1

Xi,k+1 = − Gi,m

Aii − εmBii − Bii Zi Gi − Gi Bii Zi
.

Step5. OrthogonalizeXk+1 to the vectorsX1, . . . , Xk, i.e., forn= 1, . . . , k do

σn = (Xn, Xk+1),

Xk+1 = Xk+1− σn Xn.

Step6. Compare the maximum of the absolute value ofσn (n= 1, . . . , k) with an
orthogonality criterion and possibly repeatStep5. Normalize the finalXk+1.

Step7. Putk= k+ 1. Form Fik+1= (AXi , Xk+1), Sik+1= (B Xi , Xk+1), i = 1, . . . ,
k+ 1 and return toStep2.

The diagonal iterative method is similar to the new iterative method and the band iterative
method. However, the main difference consists in the absence of a linear equation solution.
This simplification leads to more slow convergence of the diagonal iterative method com-
pared to the new iterative method and the band iterative method. Nevertheless, when a
calculation of theA and B matrices is faster than a solution of a linear equation system,
then the diagonal iterative method could have an advantage over the band and new iterative
methods, because the diagonal iterative method could be less time consuming in this case.
However, on the other hand, when calculation of the A and B matrices takes longer than a
solution of a linear equation system, then the band and the new iterative methods outperform
the diagonal iterative method due to more faster convergence of the iterations. Thus, we
can see that the problem of computational efficiency of the new methods depends on some
external factors so that it must be considered separately.

IV. DIAGONAL AND BAND JACOBI–DAVIDSON METHODS

The diagonal approximations of all left hand side matrices of Eq. (3) lead to another new
simple formula of a basis vector

Ui = − [(A− εB)X] i

(Aii − εBii )(Bii − (Bii Xi )
2)2
.

This equation permits us to construct the diagonal Jacobi–Davidson iterative method for
calculation of selected lowest eigenvalues and corresponding eigenvectors of the generalized
eigenvalue problem (1). A numerical algorithm of this method is similar to the diagonal
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iterative method introduced in the previous section and given below:

Step1. Select an orthogonal set of approximate vectors to the first eigenvectors
X1, X2, . . . , Xk (k≥m). Form and saveAX1, AX2, . . . , AXk, andFi j = (AXi , X j ), Si j =
(B Xi , X j ), i, j = 1, . . . , k.

Step2. Solve the equationFd= εSd and select the eigenvectord= (d1, . . . ,dk)
T

corresponding to themth eigenvalueεm of this equation.
Step3. FormZ= ∑k

i=1 di Xi as an approximation to themth eigenvector. FormGm=
AZ− εmBZ and check convergence on‖Gm‖.

Step4. Form new vectorXk+1

Xi,k+1 = − Gi,m

(Aii − εmBii )(Bii − (Bii Zi )2)2
.

Step5. OrthogonalizeXk+1 to the vectorsX1, . . . , Xk, i.e., forn= 1, . . . , k do

σn = (Xn, Xk+1),

Xk+1 = Xk+1− σn Xn.

Step6. Compare the maximum of the absolute value ofσn (n= 1, . . . , k) with an
orthogonality criterion and possibly repeatStep5. Normalize the finalXk+1.

Step7. Putk= k+ 1. Form Fik+1= (AXi , Xk+1), Sik+1= (B Xi , Xk+1), i = 1, . . . ,
k+ 1, and return toStep2.

The band Jacobi–Davidson algorithm is obtained when a band submatrix withn diagonals
of the full matrix

(I − X X+)(A− εB)(I − X X+) (13)

is used in solution of Eq. (3). Therefore, the difference between the diagonal and band
Jacobi–Davidson algorithms is only in Step 4. In the band Jacobi–Davidson algorithm a new
vectorXk+1 is calculated from a solution of the linear equation system with the band matrix

(I − Z Z+)(A− εB)(I − Z Z+)Xk+1 = −Gm. (14)

Note that the Jacobi–Davidson algorithm used in the present investigation is obtained when
a calculation of a new vector at Step 4 in the diagonal Jacobi–Davidson method is replaced
by the solution of Eq. (14) with the full matrix.

Note also that Eq. (3) for a correction vector of the Jacobi–Davidson method has been
derived from Eq. (4). However, this equation is degenerate when no approximations are
used for left-hand side matrices. Equation (3) preserves in some sense this property. In
particular, by direct verification we can find that matrix (13) is singular ifX is a solution
of Eq. (1). Nevertheless, the system of linear equation (3) is consistent because the residual
vector is orthogonal to a solution of Eq. (1). Thus, we can see that numerical problems in a
solution of a linear equation system in the Jacobi–Davidson and in the new iterative method
are similar and connected with singularity of the linear system matrix.

V. NUMERICAL TESTS

In all numerical tests presented below iterations were terminated when the Euclidean
norm of the residual vector was less than 10−10. The Euclidean norm of a residual vector or
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number of iterations needed for calculation of an eigenvalue are presented in tables mainly to
demonstrate convergence of different methods in these calculations. The maximal dimension
of the Krylov space was equal to 50. The following notations are used below: NIM is for the
new iterative method proposed in this work; BIM(n) is for the band iterative method with
n diagonals; DIM is for the diagonal iterative method; JD is used for the Jacobi–Davidson
method; BJD(n) is for the band Jacobi–Davidson method withn diagonals; DJD is for the
diagonal Jacobi–Davidson method; D is for the Davidson method; and GD(n) is used for
the generalized Davidson method [22] withn diagonals. The algorithm of the Davidson
method used in the present calculation differs from that of the diagonal iterative method
and the diagonal Jacobi–Davidson method described above in Step 4 only. At this step, a
new basis vector in the Davidson method was calculated by the Boys–Nesbet formula for
a correction vector (4).

EXAMPLE 1. A test matrixA of order 20 was taken from the first example of Ref. [22].
Matrix A was tridiagonal except thatA1n and An1 were nonzero, withAi j = i while all
other nonzero elements were equal to 1. The starting vector was(1.0, 0.1, 0.1, . . . ,0.1)T.
The structure of this matrix is similar to the H¨uckel matrix [1] of a ring polymer. The
convergence of the D, GDM(3), DJD, BJD(3), JD, DIM, BIM(3), and NIM methods is
presented in Table I. Comparison of these results shows that convergence of the GD, BJD,
and BIM methods as well JD and NIM methods is similar while DJD and DIM used one
iteration step less when compared to the Davidson method.

EXAMPLE 2. The lowest eigenvalue of the diagonal matrix of order 100

Ai j =


i /55, i = 1, . . . ,8

19/55+ i /55, i = 9, . . . ,16

i − 16, i = 16, . . . ,100

proposed in Ref. [43] was determined by the Davidson, DJD, and DIM methods in this
example. The last two methods converged at the 2nd iteration while the Davidson method
reached the solution at the 56th iteration. Iterations started with the(1.0, 0.05, . . . ,0.05)T

TABLE I

Convergence on the Norm of the Residual Vector for Different Methods in Example 1

Iteration D GD(3) DJD BJD(3) JD DIM BIM(3) NIM

1 0.52735+01 0.52735+01 0.52735+01 0.52735+01 0.52735+01 0.52735+01 0.52735+01 0.52735+01
2 0.55473+01 0.37773+01 0.13455+01 0.18826+01 0.23692+01 0.17915+01 0.18826+01 0.23692+01
3 0.18025+01 0.12863+01 0.13239+01 0.11818+01 0.14567+01 0.12866+01 0.11818+01 0.14567+01
4 0.17788+01 0.11214+01 0.38056+00 0.14981+01 0.15298+01 0.42053+00 0.14981+01 0.15298+01
5 0.95384+00 0.10343+01 0.83907-01 0.59038-01 0.22739-01 0.78438-00 0.59038-01 0.22739-01
6 0.76416-01 0.15143-01 0.22301-01 0.17246-02 0.65026-07 0.15242-01 0.17246-02 0.65026-07
7 0.11769-01 0.10149-07 0.42753-02 0.51518-07 0.19118-14 0.29721-02 0.51518-07 0.26635-14
8 0.24070-02 0.56239-14 0.67498-03 0.33977-14 0.42528-03 0.23743-14
9 0.22914-03 0.85420-04 0.52728-04

10 0.24869-04 0.92272-05 0.50383-05
11 0.28416-05 0.95266-06 0.44750-06
12 0.23595-06 0.87736-07 0.37375-07
13 0.20861-07 0.71991-08 0.41318-08
14 0.14084-08 0.33083-09 0.28808-09
15 0.14697-09 0.31498-10 0.14483-10
16 0.60098-11
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TABLE II

Convergence on the Norm of the Residual Vector of Different Methods

for the Test Matrix of Example 2

Iteration D DJD DIM

1 0.18748+02 0.18748+02 0.18748+02
2 0.17025+02 0.29466-14 0.38262-14
3 0.93305+01
4 0.90111+01
5 0.84227+01

initial vector. The convergence of these iterations is presented in Table II. We can see that
the convergence of the diagonal Jacobi–Davidson and diagonal iterative methods is faster
than quadratic at the end of the iterations. This is because for the diagonal matrix these
diagonal methods are equivalent to the Jacobi–Davidson and the new iterative methods.

EXAMPLE 3. In this example the number of iterations that were needed to determine the
lowest eigenvalue and the corresponding eigenvector of a symmetric matrix of order 500
by different methods were compared. This matrix is defined by the relation

Ai j =
{

i, i = j

W/abs(i − j ), i 6= j .

TABLE III

A Comparison of the Different Methods for Example 3

W

Method 1.0 0.5 0.1 0.01 0.001

D 26 26 22 21 21
GD(3) 24 21 22 20 24
GD(5) 26 30 22 21 25
GD(11) 39 46 26 36 30
GD(21) 82 61 65 68 69
GD(51) 40 43 58 52 50
DJD 17 13 10 7 6
BJD(3) 14 12 9 7 6
BJD(5) 13 13 9 7 7
BJD(11) 13 11 8 7 7
BJD(21) 14 11 9 8 7
BJD(51) 13 11 9 9 8
JD 9 8 7 6 6
DIM 15 13 9 7 6
BIM(3) 14 12 9 7 6
BIM(5) 13 13 9 7 7
BIM(11) 13 11 8 7 7
BIM(21) 14 11 9 8 7
BIM(51) 13 11 9 9 8
NIM 9 8 7 6 6

Note.The number of iterations is reported that are needed to find the lowest eigenvalue.
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TABLE IV

Convergence of the Different Methods of Example 4

Dimension Dimension Dimension

Method 400 900 1600 Method 400 900 1600 Method 400 900 1600

D 50 52 52 DJD 50 52 52 DIM 52 52 52
GD(3) 38 38 38 BJD(3) 38 38 38 BIM(3) 38 38 38
GD(5) 36 36 36 BJD(5) 37 37 37 BIM(5) 36 36 36
GD(21) 36 36 36 BJD(21) 36 37 37 BIM(21) 36 36 36
GD(51) 28 36 36 BJD(51) 20 36 37 BIM(51) 18 36 36
GD(101) 27 22 22 BJD(101) 12 20 20 BIM(101) 11 18 18
GD(151) 53 27 22 BJD(151) 16 12 20 BIM(151) 11 11 18
GD(201) 15 60 27 BJD(201) 20 19 12 BIM(201) 9 11 11

JD 7 6 6 NIM 6 6 6

Note.The number of iterations is reported that are needed to find the lowest eigenvalue.

All iteration methods started with initial vector equal to(1.0, 0.001, 0.001, . . . ,0.001)T.
Calculations were performed for five different values ofW. This parameter changes the di-
agonal dominance of this matrix. The results of these calculations are presented in Table III.
They show that the DIM has a small advantage over the DJD method and both of them are
better than the Davidson method. It should be noted also that the advantage of the DIM and
DJD methods over the Davidson method increases with increasing diagonal dominance of
the test matrix. Convergence of the BIM and BJD methods is very similar and significantly
better compared to the GD method. The NIM and JD methods display the best convergence
in this example.

Additionally, the lowest eigenvalue of the same matrix of order 2000 withW= 0.001 was
calculated by the DIM, DJD, and Davidson methods. In the latter case, 175 iterations were
needed to obtain the correct solution. The DJD used 7 iterations, while only 6 iterations
were used by the NIM method.

EXAMPLE 4. The lowest eigenvalue of the generalized eigenvalue problem (1) of order
400, 900, and 1600 with the matrices proposed in Ref. [53] was determined in this example
by different methods. Results of these calculations are presented in Tables IV and V. Their

TABLE V

Convergence of the New Iterative Method with the Matrices of Order 400 of Example 4

JD NIM

Iteration Eigenvalue Res. norm Eigenvalue Res. norm

1 −12.26625649283094 0.35255+01 −12.26625649283094 0.35255+01
2 −12.29216863017134 0.17875+01 −12.28740689800787 0.16976+01
3 −15.51688085881869 0.16415+01 −15.49796410187801 0.19020+01
4 −15.93619336403492 0.68650-01 −15.93693829254018 0.30147-01
5 −15.93704612682402 0.11697-03 −15.93704612831661 0.92399-07
6 −15.93704612831663 0.10616-09 −15.93704612831660 0.29008-13
7 −15.93704612831662 0.27146-13
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comparison shows that the DIM, DJD, and Davidson methods as well the BIM, BJD, and GD
methods with a small number of band rows display similar convergence correspondingly.
However, for a large number of band rows the BIM method outperforms the BJD method,
which in one’s turn outperforms the Davidson method. The convergence of the NIM is a
little better than that of the JD method. For the matrices of order 400, the convergence of
the NIM and JD methods is given in TableV. We can see that it is faster than quadratic.

EXAMPLE 5. The largest eigenvalue of a test matrix proposed in Ref. [35] whose non-
zero elements are defined by the relation

Ai j =


i, i = j,

0.5, i = j + 1, i = j − 1

0.5, (i, j )∈ [(1, n), (n, 1)]

was calculated by different methods. Dimension of the test matrix was equal to 1000,
while an initial vector was equal to(1.0, 0.01, . . . ,0.01)T. Obtained results are given in
Table VI. They show that the convergence property of the NIM and JD as well BIM and
BJD methods is similar, while the behavior of the diagonal methods is quite different. The
best convergence was displayed by the DIM and the slowest by the Davidson method. The
condition number of the matrix in the JD method in this example was extremely high at
the end of iterations. This results in a numerical problem. Therefore, only the 0.27065-09
value of the residual vector was reached by this method.

EXAMPLE 6. In this example, the zero eigenvalue of the Hilbert matrix with dimension
of order 1000 was determined by different methods. The Hilbert matrix is defined in the
following way

Ai j =
{ −1

2i − 1, i = j

−1
i + j − 1, i 6= j .

Results of these test calculations obtained with the starting vector equal to(0.001, 0.001, . . . ,
1.0)T are given in Table VII. They show only a small advantage of the BIM and BJD

TABLE VI

Convergence on the Norm of the Residual Vector for Different Methods in Example 5

Iteration D GD(3) DJD BJD(3) JD DIM BIM(3) NIM

1 0.16766+03 0.16766+03 0.16766+03 0.16766+03 0.16766+03 0.16766+03 0.16766+03 0.16766+03
2 0.79458+02 0.16710+03 0.70974+00 0.56094+00 0.77235+02 0.97330+00 0.56094+00 0.77235+02
3 0.79174+02 0.51283+00 0.70974+00 0.94622+00 0.32774+02 0.56030+00 0.94622+00 0.32774+02
4 0.57425+02 0.29706-01 0.77239+00 0.14526-01 0.65083+01 0.66127-01 0.14526-01 0.65083+01
5 0.12659+02 0.52532-05 0.20686-00 0.47811-04 0.21372+01 0.15521-01 0.47811-04 0.21372+01
6 0.12829+02 0.25793-11 0.59411-01 0.13194-10 0.70261+00 0.19505-02 0.10282-10 0.70261+00
7 0.21416+02 0.79522-02 0.49001-02 0.11102-03 0.49001-02
8 0.65544+01 0.11531-02 0.27065-09 0.96683-05 0.67689-10
9 0.19410+02 0.92830-04 0.57259-06

10 0.44205+01 0.90118-05 0.48091-07
11 0.24229+01 0.52165-06 0.34047-08
12 0.22197+01 0.38238-07 0.18247-09
13 0.34601+01 0.17295-08 0.11505-10
14 0.57337+01 0.10136-09
15 0.94285+01 0.37496-10
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TABLE VII

A Comparison of the Different Methods for Example 6

Method Num. of iter. Method Num. of iter. Method Num. of iter.

D 18 DJD 18 DIM 16
GD(3) 17 BJD(3) 18 BIM(3) 18
GD(5) 18 BJD(5) 19 BIM(5) 19
GD(21) 15 BJD(21) 15 BIM(21) 15
GD(51) 16 BJD(51) 16 BIM(51) 15
GD(101) 13 BJD(101) 11 BIM(101) 11
GD(151) 16 BJD(151) 14 BIM(151) 14
GD(201) 11 BJD(201) 10 BIM(201) 10

JD 8 NIM 8

methods over the GD method. The DIM used less number of iterations when compared to
the DJD and Davidson methods. Convergence of the NIM and JD methods was similar.

EXAMPLE 7. The total energy of the ground state of the BC molecule was calculated by
the configuration interaction (CI) method as implemented in the MRD-CI program [67–71].
For correct comparison, the DJD and DIM methods were used in this program directly
without modification to calculate the lowest eigenvalue of the CI matrix along with the
Davidson method, which is usually employed in this program. The present investigation
points out, however, that a more efficient method could be proposed for calculation of lowest
roots of the CI matrix [72]. The order of the CI matrix was equal to 267,985. The iterations
were terminated when the Euclidean norm of the residual vector was less than 10−6. All
three methods showed similar convergence in these calculations. A solution was obtained
at 18th iteration step by each method.

VI. CONCLUSIONS

A new iterative method for calculation of selected lowest eigenvalues and correspond-
ing eigenvectors of the generalized eigenvalue problem is proposed in this work together
with its band and diagonal versions. The band and diagonal Jacobi–Davidson methods have
been proposed also by employing the corresponding approximation to the Jacobi–Davidson
method. These five new methods together with the Davidson, generalized Davidson, and
Jacobi–Davidson methods form three groups of methods. The first group includes the
Davidson and generalized Davidson methods, the second one is formed by the Jacobi–
Davidson method and its simplified versions, while the new iterative method together with
its diagonal and band versions forms the third group of methods.

Numerical tests show that the convergence property in the Jacobi–Davidson and the
Newton type methods is improved from diagonal to the full methods. However, for the
Davidson-type methods this is not correct. The generalized Davidson method outperforms
the Davidson method only for narrow band matrices. With wide band matrices, conver-
gence of the generalized Davidson method is bad. This is a consequence of the fact that
with increasing bandwidth Eq. (4) becomes degenerate. Summarizing the results of all test
calculations we can conclude that the convergence of the Jacobi–Davidson and Newton
type methods is better when compared to the Davidson type method. This is due to the
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orthogonality property of the correction vector of the Jacobi–Davidson and the new iter-
ative methods. An advantage of the Newton type methods over the Jacobi–Davidson type
methods that can be observed in the presented results is connected with the general approach
to the derivation of a correction vector. The equation of a correction vector in the Jacobi–
Davidson type method can be derived by assuming that variation of the residual vector
is equal to zero, while the equation of a correction vector in the Newton type methods is
obtained by assuming that a variation of the quadratic approximation of the functional (6)
is equal to zero.
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(Birkhäuser, Boston, 1985), Vol. 1.



666 ALEXANDER V. MITIN

21. D. M. Wood and A. Zunger, A new method for diagonalising large matrices,J. Phys. A: Math. Gen.18, 1343
(1985).

22. R. B. Morgan and D. S. Scott, Generalizations of Davidson’s method for computing eigenvalues of sparse
symmetric matrices,SIAM J. Sci. Stat. Comput.7, 817 (1986).

23. V. M. Umar and C. F. Fischer, Multitasking the Davidson algorithm for the large, sparse eigenvalue problem,
Int. J. Supercomput. Appl.3, 28 (1989).

24. J. D. Kress, S. W. Woodruff, G. A. Parker, and R. T. Pack, Some strategies for enhancing the performance of
the block Lanczos method,Comput. Phys. Comm.53, 109 (1989).

25. B. Noud-Omid, Applications of the Lanczos method,Comput. Phys. Comm.53, 157 (1989).

26. B. N. Parlett and B. Nour-Omid, Towards a block Lanczos program,Comput. Phys. Comm.53, 169 (1989).

27. J. H. van Lenthe and P. Pulay, A space-saving modification of Davidson’s eigenvector algorithm,J. Comput.
Chem.11, 1164 (1990).

28. J. Olsen, P. Jørgensen, and J. Simons, Passing the one-billion limit in full configuration-interaction (FCI)
calculations,Chem. Phys. Lett.169, 463 (1990).

29. C. W. Murray, S. C. Racine, and E. R. Davidson, Improved algorithms for the lowest few eigenvalues and
associated eigenvectors of large matrices,J. Comput. Phys.103, 382 (1992).

30. R. B. Morgan and D. S. Scott, Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue
problems,SIAM J. Sci. Comput.14, 585 (1993).

31. T. Koslowski and W. von Nissen, Linear combination of Lanczos vectors: A storage-efficient algorithm for
sparse matrix eigenvector computations,J. Comput. Chem.14, 769 (1993).

32. R. G. Grimes, J. G. Levis, and M. D. Simon, A shifted block Lanczos algorithm for solving sparse symmetric
generalized eigenproblems,SIAM J. Matrix Anal. Appl.15, 228 (1994).

33. D. Calvetti, L. Reichel, and D. Sorensen, An implicitly restarted Lanczos method for large symmetric eigen-
value problems,Electron. Trans. Numer. Anal.2, 1 (1994).

34. J. M. Bofill and J. M. Anglada, Some remarks on the use of the three-term recurrence method in the configu-
ration interaction eigenvalue problem,Chem. Phy.183, 19 (1994).

35. M. Crouzeix, B. Philippe, and M. Sadkane, The Davidson method,SIAM J. Sci. Comput.15, 62 (1994).

36. F. X. Gadea, Large matrix diagonalization, comparison of various algorithms and a new proposal,Chem.
Phys. Lett.227, 201 (1994).

37. A. Stathopoulos, Y. Saad, and C. F. Fischer, Robust preconditioning of large, sparse, symmetric eigenvalue
problems,SIAM J. Comput. Appl. Math.64, 197 (1995).

38. H. Dachsel and H. Lischka, An efficient data compression method for the Davidson subspace diagonalization
scheme,Theor. Chim. Acta92, 339 (1995).

39. G. L. G. Sleijpen, J. G. L. Booten, D. R. Fokkema, and H. A. Van der Vorst, A Jakobi–Davidson type methods
for generalized eigenproblems and polynomial eigenproblems,BIT 36, 595 (1996).

40. F. Webster and G.-C. Lo, Projective block Lanczos algorithm for dense, hermitian eigensystems,J. Comput.
Phys.124, 146 (1996).

41. H. J. J. van Dam, J. H. van Lenthe, G. L. G. Sleijpen, and H. A. van Der Vorst, An improvement of Davidson’s
iteration method: Applications to MRCI and MRCEPA calculations,J. Comput. Chem.17, 267 (1996).

42. G. L. G. Sleijpen and H. A. van Der Vorst, A Jakobi–Davidson iteration method for linear eigenvalue problems,
SIAM J. Matrix Anal. Appl.17, 401 (1996).

43. A Strathopoulos, Y. Saad, and K. Wu, Dynamic thick restarting of the Davidson and the implicitly restarted
Arnoldi method,SIAM J. Sci. Comput.19, 227 (1998).

44. L. Borges and S. Oliveira, A parallel Davidson-type algorithm for several eigenvalues,J. Comput. Phys.144,
727 (1998).

45. M. Genseberger and G. L. G. Sleijpen, Alternative correction equation in the Jakobi–Davidson method,Numer.
Linear Algebra Appl.6, 235 (1999).

46. J. K. Cullum and R. A. Wiloughby,Lanczos Algorithms for Large Symmetric Eigenvalue Computations
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